II: 3Ny2 - (5N + 1)y + 4 = 0
Sum of the roots of equation II is 11.
5N + 1 = 11
N = 2
6y2 - 11y + 4 = 0
6y2 - 8y - 3y + 4 = 0
(2y - 1)(3y - 4) = 0
y = ½, 4/3
Larger root of equation I = 1 + 4/3 = 7/3
I: (Mx)2 - 36x + 2.5(5M - 1) = 0
49M2/9 - 252/3 + 12.5M - 2.5 = 0
49M2 + 112.5M - 778.5 = 0
49M2 + 259.5M - 147M - 778.5 = 0
(49M + 259.5)(M - 3) = 0
M = 3, -259.5/49 (not possible)
9x2 - 36x + 35 = 0
9x2 - 15x - 21x + 35 = 0
(3x - 5)(3x - 7) = 0
x = 5/3, 7/3
Sum of smaller roots of equation I and II together = ½ + 5/3 = 13/6
2Np2 - (4M + 2.5)p + 1.5(M + N) = 0
2*2p2 - (4*3 + 2.5)p + 1.5(3 + 2) = 0
4p2 - 14.5p + 7.5 = 0
4p2 - 12p - 2.5p + 7.5 = 0
(4p - 2.5)(p - 3) = 0
p = 2.5/4, 3
Required product = 13/6 * 3 = 13/2 = 6.5