Let us factor the terms in the numerator and denominator:
(sin θ - 2 sin3θ ) = sin θ (1- 2 sin2 θ)
(2 cos3 θ -cos θ)=cos θ(2cos2 θ -1)
Now;
[(sin θ (1-2 sin2 θ))/(cos θ (2 ccs2 θ -1))]3x(1/tan θ) -sec2 θ
Now, use the identity tan θ = sin θ / cos θ, and simplify:
(sin3 θ (1-2 sin2 θ)3)/(cos3 θ (2cos2 θ -1)3) X (cos θ /sin θ)-sec2θ
After canceling sin θ and cos θ terms:
(sin2θ (1 -2 sin2 θ)3)/(cos2 θ (2 cos2 θ -1)3) -sec2 θ
We know that 2 cos2 θ - 1 = cos 2 θ, so the expression becomes;
(sin2 θ (1 -2 sin2 θ)3)/(cos2 θ (cos 2 θ)3) - sec2 θ
Using the identity cos 2 θ = 1-2 sin2 θ:
(sin2 θ (cos 2 θ)3)/ (cos2 θ (cos 2 θ)3)- sec2 θ
Cancel out the term (cos 2 θ)3
Now the expression become:
(sin2 θ / cos2 θ)-sec2 θ
tan2 θ - sec2 θ
using identity: 1 + tan2 θ = sec2 θ
tan2 θ -sec2 θ=-1
option (d) is the correct answer.