Equation I:
N = 3 [The lowest odd prime number]
N2 = 9
A2 - 21A + 228 = 0
A2 - 12A - 19A + 228 = 0
A (A - 12) - 19 (A - 12) = 0
(A - 19) (A - 12) = 0
A = 19, 12
If M = 19 and P = 12
4X2 - 12X - (192 + 9) = 0
4X2 - 12X - 370 = 0
2X2 - 6X - 185 = 0
X = (6 ± √1516)/4 [Not satisfied]
If M = 12 and P = 19
4X2 - 19X - (122 + 9) = 0
4X2 - 19X - 153 = 0
4X2 - 36X + 17X - 153 = 0
4X (X - 9) + 17 (X - 9) = 0
(4X + 17) (X - 9) = 0
X = - 4.25, 9 [Satisfied]
Equation II:
Y - √N2 = (8M - P + 7)/3Y
Y - √9 = (8 * 12 - 19 + 7)/3Y
Y - 3 = 84/3Y
Y - 3 = 28/Y
Y2 - 3Y = 28
Y2 - 3Y - 28 = 0
Y2 - 7Y + 4Y - 28 = 0
Y (Y - 7) + 4 (Y - 7) = 0
(Y + 4) (Y - 7) = 0
Y = -4, 7
17P - 53N + 19M - 9 * the largest roots of equation II
=> 17 * 19 - 53 * 3 + 19 * 12 - 9 * 7
=> 323 - 159 + 228 - 63
=> 551 - 222
=> 329